Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.14.23291395

ABSTRACT

Background After initial COVID-19 disease, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC. Methods RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands. Serum was collected at weeks 4, 12 and 24 of follow-up. Monthly symptom questionnaires were completed from month 2 after illness onset onwards; lung diffusion capacity (DLCO) was tested at 6 months. Cytokine concentrations were analysed by human magnetic Luminex screening assay. We used a linear mixed-effects model to study log-concentrations of cytokines over time, assessing their association with socio-demographic and clinical characteristics that were included in the model as fixed effects. Results 186/349 (53%) participants had [≥]2 serum samples and were included. Of these, 101 (54%: 45/101[45%] female, median age 55 years [IQR=45-64]) reported PASC at 12 and 24 weeks after illness onset. We included 37 reference samples (17/37[46%] female, median age 49 years [IQR=40-56]). PASC was associated with raised CRP and abnormal diffusion capacity with raised IL10, IL17, IL6, IP10 and TNF at 24 weeks in the multivariate model. Early (0-4 week) IL-1{beta} and BMI at illness onset were predictive of PASC at 24 weeks. Conclusions Our findings indicate that immune dysregulation plays an important role in PASC pathogenesis, especially among those individuals with reduced pulmonary function. Early IL-1{beta} shows promise as predictors of PASC.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.09.22282120

ABSTRACT

Background: Studies on long COVID differ in the selection of symptoms used to define the condition. We aimed to assess to what extent symptom selection impacts prevalence estimates of long COVID. Methods: In a prospective cohort of patients who experienced mild to critical coronavirus disease 2019 (COVID-19), we used longitudinal data on the presence of 20 different symptoms to evaluate changes in the prevalence of long COVID over time when altering symptom selection. Results: Changing symptom selection resulted in wide variation in long COVID prevalence, even within the same study population. Long COVID prevalence at 12 months since illness onset ranged from 39.6% (95%CI=33.4-46.2) when using a limited selection of symptoms to 80.6% (95%CI=74.8-85.4) when considering any reported symptom to be relevant. Conclusions: Comparing the occurrence of long COVID is already complex due to heterogeneity in study design and population. Disparate symptom selection may further hamper comparison of long COVID estimates between populations. Harmonised data collection tools could be one means to achieve greater reproducibility and comparability of results.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.02.22275916

ABSTRACT

Summary A significant number of COVID-19 patients develop ‘long COVID’, a condition defined by long-lasting debilitating, often neurological, symptoms. The pathophysiology of long COVID is unknown. Here we present in-vivo evidence of widespread neuroinflammation in long COVID, using a quantitative assessment, [ 18 F]DPA-714 PET, in two long COVID patients. We reanalyzed historical data from three matched healthy control subjects, for comparison purposes. Both patients with long COVID had widespread increases in [ 18 F]DPA-714 binding throughout the brain. Quantitative measures of binding (BP ND values) were increased on average by 121% and 76%, respectively. This implicates profound neuroinflammation in the pathophysiology of long COVID.


Subject(s)
COVID-19 , Long QT Syndrome
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.25.21257797

ABSTRACT

Background The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose sparing strategies, particularly single vaccine dosing of individuals with prior SARS-CoV-2 infection. Methods We evaluated SARS-CoV-2 specific antibody responses following a single-dose of BNT162b2 (Pfizer-BioNTech) mRNA vaccine in 155 previously SARS-CoV-2-infected individuals participating in a population-based prospective cohort study of COVID-19 patients. Participants varied widely in age, comorbidities, COVID-19 severity and time since infection, ranging from 1 to 15 months. Serum antibody titers were determined at time of vaccination and one week after vaccination. Responses were compared to those in SARS-CoV-2-naive health care workers after two BNT162b2 mRNA vaccine doses. Results Within one week of vaccination, IgG antibody levels to virus spike and RBD proteins increased 27 to 29-fold and neutralizing antibody titers increased 12-fold, exceeding titers of fully vaccinated SARS-CoV-2-naive controls (95% credible interval (CrI): 0.56 to 0.67 v. control 95% CrI: -0.16 to -0.02). Pre-vaccination neutralizing antibody titers had the largest positive mean effect size on titers following vaccination (95% CrI (0.16 to 0.45)). COVID-19 severity, the presence of comorbidities and the time interval between infection and vaccination had no discernible impact on vaccine response. Conclusion A single dose of BNT162b2 mRNA vaccine up to 15 months after SARS-CoV-2 infection provides neutralizing titers exceeding two vaccine doses in previously uninfected individuals. These findings support wide implementation of a single-dose mRNA vaccine strategy after prior SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL